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S U M M A R Y  
In this paper the combinatorial properties of rigid plane skeletal structures are investigated. Those properties are 
found to be adequately described by a class of graphs. 

1. Introduction 

The subject of rigidity of skeletal structures is treated in more or less detail in handbooks on 
mechanics and on statics. The treatment one finds there clearly may be useful to engineers who 
have to solve statical problems concerning given structures either with a very limited number 
of components or having them conveniently arranged according to some regular pattern. If 
however one is confronted with structures not meeting those requirements the approach of 
the handbooks is no longer adequate at all. 

Moreover the set of notions found in this literature does not lend itself easily to a mathemat- 
ical treatment. If definitions are given at all they tend to excel by ambiguity and obscurity. 
For the purpose of this paper clear definitions are indispensable. That is why we give new 
definitions of skeletal structure and of rigidity (in Section 2). The word skeletal structure is 
chosen so as to avoid some misunderstandings connected with the other more or less current 
designations truss, framework, articulated structure. 

In Section 3 examples are given which it is hoped will elucidate the definitions and give the 
reader the opportunity to materialize the rather abstract goings-on in later paragraphs. 

In Section 4 some preliminary analytic geometry is set forth. Section 5 treats criteria for 
rigidity and a class of graphs is found which are closely related to rigid skeletal structures. 
This class of graphs is shown to be obtainable by an algorithm and its relation to rigid skeletal 
structures is examined more thoroughly in Section 6. 

2. Graphs, Skeletal Structures and Rigidity 

In the following we shall have to use part of the language of set-theory if only for the sake of 
terseness. As many readers are not supposed to be familiar with this language we collect here 
the items we need. 
s ~S means: the element s belongs to the set S; 
s~S means: the element s does not belong to the set S. 
S ~ T means : every element of S belongs to T or: S is a subset of T. 
S = {a, b, c, d} means : S contains the elements a~ b, c, d and no other elements. 
S = {@i= 1, 2 . . . .  , n} means: S consists of the elements al, a2, ..., a,. If I =  {1, 2 . . . . .  n} this 

may be written: S={aiJ i~I}. 
If S and T are both sets we denote by S Q) T the set of elements belonging to either S or T 
or both, by S 0 T the set of elements belonging to both S and T, by S \ T  the set of those elements 
of S which do not belong to T. 

If t ~ S we shall also write S\t for the set which remains when t is taken out of S. 
iS[ will denote the number of elements of a finite set S and ~(S) the set of pairs of S, i.e. 

the set having as it elements those subsets of S which contain exactly two different elements of 
S. So we have [~(S)I =�89 ( IS[-1) .  
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Remark: We shall also use Ix[ for the length of a Euclidean vector x. There will arise no 
confusion between Ix[ and ISI. 

Our definition of the concept of graph is adapted to the needs of this paper (in the language 
of more general definitions our graphs are simple, undirected, and finite). 

Definition 2.1 : A graph F consists of a finite set K (the set of nodes ofF) and a subset ~ of 
~(K)  (the set of edges ofF).  Notation: F(K, ~). 

The degree of a node a s K is the number of those b s K for which (a, b)s ~ (the neighbours 
of a). 

Definition 2.2 : A plane skeletal structure consists of a graph F and a mapping )~ of K into the 
Euclidean plane E 2 satisfying xa r )~b if (a, b) s ~t. Notation: (C, Z). 

I f  a is a node of F then )~a is called a joint of the skeletal structure (F, )~) and if (a, b) is an 
edge o f f  then the straight line segment between za and )~b is called a bar of (F, Z). F is called 
the underlying graph of(F, Z) and (F, )~) is a plane Euclidean realization o f f  (cf remark following 
example 2.1). 

Comment (in the sequel this will mean each time a helping hand to those who may feel our 
approach to be too abstract): Definition 2.2 might be formulated: 

A plane skeletal structure is a graph (F) together with the assignment (X) of a point (xa) of 
the plane to every node (a) of the graph in such a way as to avoid the same point to be assigned to 
two neighbouring nodes (i.e. to avoid bars having length 0). 

Definition 2.3 : A length-preserving displacement of a plane skeletal structure (F, Z) consists of: 
a) A segment [fl, 7] of real numbers with 0 s [3, Y] ; 
b) for every a s K  and for every "c s[fi, 7] a point Z~ asE2, satisfying the following conditions: 

1) )~oa=)~a for every a; 
2) the function )~a is differentiable for every a; 
3) (F, Z~) is a plane skeletal structure for every z; 
4) [ z , a - ) ~ b l = l z a - z b l  for every z and every (a, b ) s ~ .  

Comment: A length-preserving displacement is a set of plane skeletal structures (depending 
differentiably on time z) which leaves lengths of bars invariant (4) and of which the given 
skeletal structure is the one for z = 0  (1). 

A motion of E 2 in itself is a function 7z of time z and of x s E  z, differentiable in z and taking 
its values rc~x in E 2 in such a way that for every x: rc0x = x  and for every r and for every xl and 
x2: [~x l - r c~x21=lx l - x z l .  

A length-preserving displacement is said to be trivial if it results from some motion of E 2 
in itself, i.e. if there is a 7z satisfying rcd~=)~ ~. 

Definition 2.4: An infinitesimal displacement of a plane skeletal structure is a map # of K 
into the 2-dimensional Euclidean vectorspace R 2. 

Comment: An infinitesimal displacement of a plane skeletal structure is the assignment (#) 
of a vector (#a) to every joint (za). One might think of this vector as velocity. 

The set M (K) of all infinitesimal displacements of a given skeletal structure is made into a 
2 hKL-dimensional vectorspace by the following definitions: 
a) For every real ~ and every # s M (K) c~# is defined to be the element of M (K) satisfying : 

(e#)a=c~.#a forevery a s K ;  

b) For every pair #1s in(K)  and msM(K) #1+#2 is defined to be the element of M(K) 
satisfying : 

(#1+#2)a=#1a+#2a for every a s K .  
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Definition 2.5: A small displacement of a plane skeletal structure consists of: 
a) An infinitesimal displacement I*; 
b) a real number o~ > O; 
c) for every real ~ with [z I=< ~ a map Z~: K--+E2 satisfying Z, a =)~a + z" #a+ o (z)for every a K. 

(Here o(~) has the usual meaning: lim,_+o r -1 .0 (7 )=0)  

Comment: Definition 2.5 is a local version of definition 2.3 in a neighbourhood of z = 0  
without the condition of length-preservation. This condition reappears in local form in the 
following definition where admissibility means that under the small displacement lengths of 
bars do not change up till terms of higher than first order in ~. 

Definition 2.6 : A small displacement is admissible if for ever3, (a, b) E ~t 

Iz~a- z , b [ - l z a -  zbl = o(~) . 

As is well known an infinitesimal motion ofE z in itself is a map 0 : E;  ~ R  2 satisfying (~x, - Ox2, 
x,  - x2) = 0 for every pair xl,  xa of E 2. ~, may be identified with the velocity field of some motion 
rc of E 2 at time r = 0. The vanishing of the inner product means that the difference of the veloc- 
ities ~bx, and ~'xa is perpendicular to the line segment between Xa and x> 

Definition 2.7: An infinitesimal displacement # of(F, Z) is trivial if there exists an infinitesimal 
motion 4' satisfying 0)~ = #. 

Definition 2.8: A plane skeletal structure is rigid if every admissible small displacement has a 
trivial infinitesimal displacement. 

Comment: Together those definitions amount to: 
A plane skeletal structure is rigid if for every admissible small displacement its infinitesimal 

displacement assigns the same vectors to the joints of the structure as does some infinitesimal 
motion. 

3. Examples 

Example 3.1 (fig. la, lb ) :  K = {al, a>  a3} , ~ = {(al,  a2) , (a2, a3) , (a3, a l )} ,  r = F(K, ~). 
zlal = (1, 0), )~la z = (0, 1), z l a 3  = ( - 1 ,  0); (F , )~ )  is rigid. 
z2a~ = (1, 0), zZa2 = (0, 0), )~2a 3 = ( - l ,  0); (F,){2) is no t  rigid. 

[ 
lY'% 
I 
I 

Figure la. Figure lb. 

Indeed choose #a l=(0 ,  0), #a2=(0,  1), #a3=(0, 0), then Z{ defined by z~a,=12ai+z.#ai  
for i=  1, 2, 3 is an admissible small displacement with non-trivial infinitesimal displacement 
as is easily verified. 

This simple example already shows that a rigid and a non-rigid skeletal structure may have 
the same underlying graph. 
Remark: If for any (F, Z) all joints are collinear there apparently exist admissible small 
displacements with non-trivial infinitesimal displacements. To avoid this type of exception 
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we shall assume henceforth that X is non-degenerate  i.e. that not  all joints are contained in a 
straight line in E 2. 

Example 3.2: K = {al, a2, a3, a4), N = {(al, a2), (a2, a3), (a3, a4), (a4, al)},  F = F(K, N~). 
Whatever  plane realization one chooses it is always possible to fred an admissible small 

displacement with non-trivial infinitesimal displacement. This example shows the existence of 
graphs not  admitt ing a rigid realization. 

Example 3.3 (fig. 2a, 2b): K = {a~[i = 1, 2 . . . . .  6}, ~ =  {(a~, a2), (a2, a3), (a3, a~), (a~, a4), 
(a2, as), (a 3, a6), (a 4, as), (a 5, a6), (a6, a4)},/~ = F(K, ~). 

)s a 1 = (I, 0), )s a2 = (0, i), )s a3 = ( -  i, 0), )s a4 = (i, 2), 21 a 5 = (0, 3), )s a 6 ~--- ( - -  1, 2). 
The skeletal structure (F,)s admits a length-preserving displacement and afortiori is non-  
rigid; indeed we may take t Z ~ )s a i f o r i = l ,  2 ,3and for i=4 ,5 ,6 :x~a i=)s  
1 - cos ~). 

A small change however produces a rigid (F, X2), e.g. )s ai = X 1 ai for i = 1, 2, 3, 4, 6 and 
)s a5 = (6, 3) with 3 ~ 0. 

,~lCU F /@aS 

~ \  X N 

Figure 2a. Figure 2b. 

S% 

 aS" .\ / \ / 

Figure 3a. 

,t% Xz% 
A 

Figure 3b. 
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~Ct 

g : 

Figure 3c. Figure 3d. 

Example3.4 (fig. 3a, 3b): F = F(K,  ~ )  with K = {all i =  1, 2 . . . .  ,6} a n d N  = {(al, a2),(a2, a3), 
(a3, a4), (a4, as), (as, a6), (a 6, aa), (al, a4) , (as, as), (a3, a6) } . (r ,  z 1) is not  rigid ifz  1 is defined by 
Z t a~ = (1, 0), Z t a 2 = (3, �89 Z 1 a 3 = (--3, �89 Z ~ a4 = (-- 1, 0), Z t a s = (--�89 --�89 Z 1 a 6 = 

(�89 -�89 
Indeed define # by #a2 = #a3 = 0, #ax = #a6 = ( - 3 , / 3 ,  - �89 #a4 = #as = ( - � 8 9  3) and 

z~by g~l ai = Z 1 a i + r �9 #ai then )~a~ is admissible and # non-trivial. If z2 a~ = Z1 aifor i =  2, 3, 4, 5, 6 
and Z 5 a~ = (6, 0), c5 ~ 1, then (F, Z 2) is rigid. 

As in example 3.3 there exists a realization of F admitt ing a length-preserving displacement 
(Cf. fig. 3c, 3d; I owe this to Prof. F. A. Muller). 
To this end Z 3 is defined as follows: g3a~ = (~1, 0), z3a3 = (~3, 0), )~3a s = (~s, 0), z3a2 = 
(0, ?]2)' z 3 a 4 = (  0, t/4), z 3 a 6 = (  0, t/o) where ~1, 43, ~5, t/Z, t/4, //6 are non-zero real numbers.  

A length-preserving displacement of (F, Z 3) is now given by 
3 = )~3 = +~i  z ) , 0 ) ,  i 1 , 3 , 5 a n d  ai z~ai (~i(1 -2 �89 = ( 0 ,  t / i ( 1 - - t / i - 2 " c ) ~ ) ,  i = 2 , 4 , 6  

4. Trivial and Non-Trivial Inf'mitesimal Displacements 

Let x i=  (r th) be points of E 2 and ui 
We shall denote the matrix 

( ~o-~1 
~o_~2 

~o :-~, 

by ( x o -  xi (ui, 

! r  ~k 
I t o -  ~l 
~o-~ 

by 
I No - -  Xi 

/'~0--~]1 (U 1, X1--X0) 
~o-q2 (u2, x~-Xo) 

~ o -  ~ .  (u.,  x,, - Xo) 

xi - Xo) )i = 1.2 . . . . . .  and 

t /o-  t/~ (u~, x~ - Xo) 
~o-~;  (ul, x ; - X o )  
~lo-~lm (u~, x.~-Xo) 

(ui, x,-~o)li=~,~.m. 

vectors of R 2 ( i= 0, 1, 2, ..., n). 

) 
the determinant  
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Proposition 4.1: I f  the inhomogeneous quadratic form a11~2 q-a12 ~tJq-a22r12 q-bl ~ q-b2tl-bc 
vanishes at 3 non-colIinear points xi of E 2 and also at the midpoints of every pair of them, then the 
quadratic form vanishes identically. 

Proof: Homogenize the form by introduction of a new variable ~ and then transform to 
barycentric coordinates with respect to the 3 given points xi. The coefficients of the form in 
those coordinates are easily seen to be zero by substitution first of (1, 0, 0), (0, 1, 0) and (0, 0, 1) 
and after that of (0, 1, 1), (1, 0, 1) and (1, 1, 0). 

Proposition 4.2 : I f  xl (i= 1, 2, 3) are non-collinear points of E 2 and ul 3 vectors of R 2 then 
the followin9 assertions are equivalent: 
A. (x i -x j ,  u i -u j )=  O for every i and j; 
B. [ x - x  i (ui, xi-x)li=l,2,3 =O identically in x. 

Proof: First suppose B. Substitution of 2x= xi + x ~ (ira j) into [x-  x k (u k, Xa-- X)Ik= I,2,3=O 
and addition of the i-th row to thej-th row yields (u l -  u~, x i -  x j)" D = 0 where D is a determinant 
which vanishes if and only if xl, x2 and x3 are collinear. So we have proved A. 

Now suppose A. Consider I x - x i  (ui, xi-x)li= 1,2,3 as a polynomial in the coordinates 4, 
of x. 

As I ~ - ~  ~ / - r h l =  0 

~ -~2  ~ - ~ 2  

is the equation of the line though x t and x2, the first member is of degree 1 etc., so the polynomial 
is a quadratic form. This inhomogeneous quadratic form vanishes at x~ and at 2-  ~ (x~+ x~) and 
so satisfies the condkions of proposition 4.1. 

Hence A implies B. 

Lemma 4.3 : I f  xi (i = 1, 2, 3) are non-collinear points of E 2 and ua, u2 vectors o fR  2 then the 
system of equations 

( x l - x 3 ,  u l - u )  = 0 

( x 2 -  x3, u 2 -  u) = 0 

has exactly one solution. 

Proof: The determinant of the system is non-zero. 

Proposition 4.4 : An infinitesimal displacement # of (F, Z) is trivial if and only if the matrix 

( x - z a  (#a,)~a-x)),~K 

has rank 2 identically in x. The trivial infinitesimal displacements constitute a 3-dimensional 
subspace of the 2 I KI-dimensional vectorspace of infinitesimal displacements. 

Proof: First suppose the rank of (x-)~a (#a,)~a-x))a~K to be 2 identically in x. Choose 3 
non-collinear joints of zK: )~kl, zk2 and zk3 and put 0)~kl = #kx and 0){k2 =/&2-- the  infinite- 
simal motion ~, satisfying those conditions is clearly unique--. 

Then by proposition 3.2 it follows easily that both #k3 and O)~k 3 satisfy 

(Zkl-Zk3, # k l - U  ) = 0 

(zk2-  zk3, ~ k 2 -  u) = 0. 

Now lemma 3.3 yields O)~ka = #k3. 
For every other k E K there exist two joints among )~kl, zk> zk3 such that zk is not collinear 

with them. Repetition of the above argument then yields O;~k = #k for all k e K. So/z is trivial. 
If on the other hand # is trivial then it follows easily from the existence of an infinitesimal 
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motion t) and from proposition 3.2 that the matrix ( x - x a  (#a, za-x))a~K has rank 2 for 
every x. 

Finally it is clear that there is a one-to-one correspondence between the infinitesimal 
motions and the trivial infinitesimal displacements and so the trivial infinitesimal displacements 
indeed constitute a 3-dimensional subspace of the 2 [KI-dimensional vectorspace of infinite- 
simal displacements. 

5, Criteria for Rigidity 

Proposition 5.1" A small displacement of  a 2-dimensional skeletal structure is admissible if and 
only if the corresponding infinitesimal displacement "satisfies (xa-xb ,  #a- /~b)=0 for every 
(a, b )sN.  

Proof: 
]z~a- ) ~ b [ - ] z a -  zb] = 

= I)~a-)~b+~(Iza-#b)+o(z) l - lza-zb]  = 

= (za - zb + z (#a - #b) + o (z), za - zb + z (#a - #b) + o (r))r ()~a - zb, za - zb) ~ = 

= { (za - zb, )~a - zb) + 2z (za - zb, I~a - #b) + o (z)}~ - O~a- )~b, z a -  xb) ~ : 

[{ = Iza-zb l  l+2z  ()~a-)~b, # a - # b )  o(z) 1 
])~a_ )~b[2 + - = 

= [za-xbl [1 +�89 O~a-)~b'#a-#b) + o(~) -1]  = 
]za-xb] 2 

= z ( za - zb '  # a - # b )  + o(z). 
]xa-xbl 

From this and definition 1.6 the proposition follows. 
A # satisfying (za-xb, # a - # b ) =  0 for all (a, b)e N will be called an admissible infinitesimal 

displacement. 

Theorem 5.2: The assertions A, B, C, D are equivalent: 
A. The 2-dimensional skeletal structure (F, )0 is rigid. 
B. I f  ( xa-zb ,  # a - # b )  = 0 for all (a, b)~ ~ ,  then # is trivial. 
C. I f  ( z a -  zb, # a - # b ) =  0 for all (a, b)e N, then ( z a -  zb, # a - # b ) =  0 for all (a, b) e ~(K) .  
D. The matrix of the system of equations: 

( x a -  zb, # a -  t~b) = 0 for all (a, b) ~ 

has rank 2 [K[ - 3. 

Proof: The equivalence of A and B follows from the definition of rigidity and from proposition 
5.1. The equivalence of B and C follows from proposition 4.4. The equivalence of B and D 
follows from the second part of proposition 4.4. 

From the above it is clear that for a rigid skeletal structure a necessary condition is: 
[~] >2 IK]-3. This explains the non-rigidity of every realization of example 3.2. 

Proposition 5.3 : Suppose F(K, ~l) to be a graph, a, b 1, b2 to belong to K, (a, bl) ~ ~ ,  (a, b2) ~ 
and(a, k) r N if k r bi. Let K '=  K \ a ,  ~ ' = ~  N ~ ( K ' ) = N \  { (a, hi), (a, b2)} and r ' = r ' ( K ' ,  ~').  

Let moreover (F', )() be a rigid plane realization ofF'. Then (F, )0 is a rigid plane realization 
o f f  where Z satisfies z k = z ' k  for every k e K '  and )~a is non-collinear with zbl and )~b2. 

Proof: This is an easy consequence of lemma 4.3. 
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Proposition 5.4: Suppose F ( K , N )  to be a graph, a,b~,b2, b 3 to belong to K, (a, bi)e~t for 
i=1,  2, 3, (bl, b2)r  and (a, k ) 4 N  if k r  i. Let K = K \ a ,  ~l = ~ 2 ( " ] ~ ( K ) = ~ \ { ( a ,  bl) , 
(a, b2), (a, ba)}, F'= F' (K', ~')  and C" = F" (K', Yt' U {(b~, b2)}). Let moreover (F", )() be rigid. 
Then there is a )~ : K---, E 2 satisfying )~k= )( k for every k e K' and such that (F, )~) is rigid. 

Proof: Assume (F',)() to be non-rigid; the other case is easy. The admissible infinitesimal 
displacements of(F", z')are el 21 + (x 2 22 + ~3)3 with 21, 2z, )3 trivial and e ~  R and therefore those 
of (U, t )  are fil ~1 + f i 2  22 AV f13 ,~3 AV fi424 with )4 non-trivial so [x - )~bj (24b j, ~(bj - x)lj = 1, z, 3 = 0 
does not hold identically in x. 

For any choice of za any admissible displacement p of (F,)~) should satisfy #=Z~= 1 fii# i 
with p~k = 2 k for k e K' and (xa-)~bj, # a -  pbj) = 0 for j = 1, 2, 3. The necessary and sufficient 
condition for solvability of this system is (proposition 4.2) 

[)~a-)~bj (#bj,)~bj-)(a)[j=~,2, 3 = 0 .  

Now #bj=Z~= 1 fii)Jbj and 

I)~a-)~bj (2~bj, zbF)~a)b=t,2,3 = 0 

identically in 7~a for i=  1, 2, 3 because )1, ).2, ha are trivial, so the condition may be replaced by 

/~41za-zb~ (24bj, zbj-)~a)l~=a,2,3 = O. 

Choose )(a off the quadratic curve 

I x - z b  ~ (24bj,)~bj-x)lj=l,2, 3 = 0 

so as to make 

])~a-Obj (24bj, xbj-)~a)] j=l,2, 3 ~ O . 

Then fig is zero and p is trivial, so Z meets the requirements mentioned in the proposition. 

Proposition 5.5 : Every rigid plane skeletal structure (F, )~) has a rigid substructure with [K] 
joints and 2 [ K I - 3  bars. 

Proof: This follows from theorem 5.2, D ; the matrix of ( z a -  zb, # a -  #b) = 0 for all (a, b) ~ 
has rank 21K[-3 .  We can drop equations (and corresponding (a, b)~ N) until only 21KI-  3 
independent equations are left. 

If K' is a subset of the set of nodes K having at least two elements then there is a graph 
having K' as set of nodes and as edges exactly those of N of which both nodes belong to K'. 
This graph is called the subgraph spanned by K'. 

Theorem 5.6 : Any rigid plane skeletal structure (F, Z) with I~] = 2 J K ] -  3 has the property E: 
l f K '  c K and ]K'I >2 then JN ~ N ( K ' ) ) <  21K'] -3 .  

Comment : Property E says that in every spanned subgraph the number of edges is less than 
or equal to two times the number of nodes minus three. 

Proof: To every (a, b)e N there corresponds an equation ()~a-)(b, #a - /~b )=  0; because of 
rigidity and proposition 5.5 those equations are independent. If for some K' c K with ]K'] > 2 we 
should have I~(-]~(K')] > 2 1 K ' 1 - 3  then by proposition 5.5 there would be dependence 
among the corresponding 2 ] K ' ] - 3  equations, which is impossible. 

A graph with property E, I K] > 3 and ] ~J = 2 ]KI - 3 we shall call an E-graph. Now we may 
summarize the above results : Every rigid plane skeletal structure contains a rigid realization 
of an E-graph. To a large extent this result is reversible and the principal outcome of this paper 
is: Every E-graph has rigid realizations (theorem 6.5). The proof of this theorem requires some 
propositions on the structure of E-graphs, which will be proved in the next section. 
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6. E-graphs 

Proposition 6.1" An E-graph does not contain nodes of degree 1 and at least one node of 
degree <3 

Proof: Suppose F (K, N) is an E-graph and a is a node of degree 1. Then K \ a  = K' c K, 
Ig'l >2  and IN (~ ~(K')I =21K[ -3  - 1 =21K'1-2 >2[K'1-3.  This contradicts property E. 

Now assume all nodes to have degree > 4. Then evidently I N I > �89 4IKI or 2 [KI - 3 > 2 I KI. 
So there is at least one node of order =< 3 

Lelmna 6.2: Let r(K,  N) be an E-gr&ph, L c K, M c K, [L ~ M[ >=2, IN ~ ~(L)I--21L[-3,  
IN ~ #(M)[ =2 ]M[ -3 .  Then IN (~ ~ ( L  Q) M)[ =2IL U M[ -3 .  

Proof: t N ~ ( L ( J M ) [ > t N ~ ( L ) [ + I N ~ ( M ) t - ] N ~ ( L O M ) I > =  

=>2ILl-3 +2 [M[-  3 -  (2 ]L ('] M [ -  3)=21L ~ M[ -3 .  

But by property E we also have IN 0 ~ ( L  U M)[ < 2tL ~ M I - 3 .  Therefore equality holds. 

Theorem 6.3: Let F (K, N) be a graph and a ~ K a node of degree 2. Then F' (K\a, N (~ ~ ( K\a)  ) 
is an E-graph if and only if F(K, N) is an E-graph. 

Proof: If F(K, Yl) is an E-graph we have 

IN  (K\a)l = INI-2  = 2 I K I - 3 - 2  = 2 1 K \ a l -  3 

and for every L ~ K \ a  with ILl >2  

IN (~ ~ (K \a ) (~  ~(L) I - - IN  (-] ~(L)I < 2 [ L [ - 3 ,  

so U is an E-graph. 
If on the other hand F' (K\a, N (~ ~ ( K \ a ) )  is an E-graph, then 

INI = IN 0 # (K\a) l  +2 = 2 1 K \ a l -  3 +2  -- 21KI-3 

and for L c K with ILl >2  

IN  (L)I = IN 0 N 2 t r l - 3  

in case a 6 L and 

IN 0 ~(L)[ = IN (~ ~ ( K \ a )  0 N(L)[ + 2 <  2 [ L \ a [ -  3 + 2 = 2 IL l -  3 

in case a E L. So F is shown to be an E-graph. 

Theorem 6.4" Let F (K, N) be a graph and a e K a node of degree 3. Then the two following 
assertions are equivalent: 
A. F (K, 2)  is an E-graph. 
B. To at least one of the three couples of neighbours of a--say (bl, b2)--,there does not exist a 

L ~ K \ a  with bl ~ L, b2 ~ L and IN 0 r (L)]= 2 [L[ -  3 and F' (K\a, N ) is an E-graph, where 
N ' = ( N  ~ ~ ( K \ a )  ) U { (bl, be) ). 

Proof: 
I. A implies B. Indeed suppose there exist L~ c K \a ,  i = 1, 2, 3 such that b 2 E L 1, b3 ~ L,, 
b3~L2, bi lL2,  bx~L3, b2~L3 and IN(~#(L i ) I=2IL i ] -3 ,  i=1, 2, 3. There are two cases' 
1) Among 1, 2, 3 there are two indices--say 1 and 2--such that ILl ~ Lzl >2. Then by 

lemma 6.2 we have IN (~ ~ (L ,  Q) L2)[ =2ILl  U L21-3. Moreover I(L1U L2) N L3[ >__2 
(both contain bl and b2). Applying lemma 6.2 once again we find N ('] N(L1U L2 U L3)]-= 
21L1U L2U L3[-3. 
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2) L~ (~ L2I = [Lz ~ L3I= [L3 O L~I= I. Then [L~I + [L2I + IL3I= ILa U L2 U L3I + 3, so 
IN ~ ~(L~ ~) L 2 U L3)[ ->--ZilN (~ ~(Li)[ = Ei(2[L~[-3)=2lL~ 0 L2 U L31 + 6 - 9 =  
21L~ ~ L2 UL31-3 .  

In both cases we find 

I N ~  N(L1 ~ L2U L 3 ~  {a})l =21L1 U L2 U L 3 ] - 3 + 3  > 

> 2ILl ~ L2 U L 3 ~  {a}J-3 .  

This contradicts A and therefore the first part of B is proved. As to the second part of B we have 
]N'I=INI-3+I=2JKI-3-2=2IK\al-3. Now let M c K\a and IMJ >_2. If (bl, be) ~ 

(M) then [ N' N ~ (M) I = [ N 0 ~ (M)[ < 2 [MI - 3 and if (b~, b2) ~ ~ (M) then [ N 0 ~ (M)[ < 
< 2 1 M [ - 3  by the first part of B, so IN'(']~(M)I=IN(']N(M)I+I<Z[MI-3. Therefore 

F' is an E-graph. 

II. B implies A. For IN[ = IN ~ N(K\a)I  +3 = I(N ("] N(K\a)) U { (bl, b2)}l + 2 = 2 [ K \ a l  + 
- 3 + 2 = 2 [ K [ - 3 .  And i fM ~ K with [MI >2  we prove IN N N(M)L _-< 21MI-3 in the three 
cases which present themselves. 
1) If a r M we have I N ~ N (M) I = I N 0 N (K\a) ~ ~ (M) I <-_ h { (N 0 ~ (K\a)) ~ { (b l, b 2) } } 

(-] ~(M)I =< 2 [M[-  3. 
2) If a~M and either ba(~M or b2q~M then IN N ~(M)I __ IN ~ ( M \ a ) l + 2 = <  21M\al+ 

- 3 + 2 = 2 1 M I - 3 .  
3) IfaeM, baeM and b2eM we have I N (") ~(M)I < IN (-] r + 3 < 21M\a1-3  +~ so 

IN 0 ~(M)[ ___ 2 I M \ a l -  1 =21MI-3 .  
We can prove now the theorem announced at the end of Section 5 : 

Theorem 6.5 : Every E-graph has rigid realizations. 

Proof: 
I. The (unique)-E-graph with 1K I---3 evidently has rigid realizations. 
II. Assume all E-graphs with k nodes to have rigid realizations and let F (K, N) be an arbitrary 

E-graph with JK I = k +  1. By proposition 6.1 there is either a node of degree 2 or a node of 
degree 3. 

I fa  is a node of degree 2 then U(K\a, N 0 ~(K\a))is an E-graph with [K\ah =k by 
theorem 6.3. By assumption F' has a rigid realization and by proposition 5.3 (F',)() is 
extendable to a rigid realization (F,)0 of F. 

l fa  is a node of degree 3 then theorem 6.4 yields an E-graph U(K', N') with IK'L =k. By 
assumption F' has a rigid realization and by proposition 5.4 (U,)() is extendable to a 
rigid realization (F,)~) of F. 

By induction it follows that every E-graph has a rigid realization. 

Journal of Enoineerino Math., Vol. 4 (1970) 331-340 


